DATE OF LAST REVIEW: 02/11/2013

CIP CODE: 47.0603

SEMESTER: Departmental Syllabus

COURSE TITLE: Structural Analysis and Damage Repair 1

COURSE NUMBER: ACRT0140

CREDIT HOURS: 2

INSTRUCTOR: Departmental Syllabus

OFFICE LOCATION: Departmental Syllabus

OFFICE HOURS: Departmental Syllabus

TELEPHONE: Departmental Syllabus

E-MAIL: KCKCC issued email accounts are the official means for electronically communicating with our students.

PREREQUISITE(S): ACRT0100

REQUIRED TEXT AND MATERIALS: Please check with the KCKCC bookstore, http://www.kckccbookstore.com/, for the required texts for your particular class.

COURSE DESCRIPTION: Upon the completion of this course, the student will be able to identify structural panels of the vehicle. The student will learn unibody and body over frame inspection and measurement and frame repair methods. Proper procedures for welding structural panels will also be learned.

METHOD OF INSTRUCTION: A variety of instructional methods may be used depending on content area. These include but are not limited to: lecture, multimedia, cooperative/collaborative learning, labs and demonstrations, projects and presentations, speeches, debates, panels, conferencing, performances, and learning experiences outside the classroom. Methodology will be selected to best meet student needs.

COURSE OUTLINE:
External Standards
I. 1.A Frame Inspection and Repair
II. 1.B Unibody Inspection, Measurement, and Repair
III. 1.D Metal Welding and Cutting
IV. 4.A Safety Precautions
EXPECTED LEARNER OUTCOMES:
A. The student will be able to identify measuring procedures
B. The student will be able to analyze the basic structural damage conditions.
C. The student will be able to identify the safety requirements pertaining to structural damage repair
D. The student will be able to analyze frame repair methods
E. The student will be able to analyze unibody inspection and measurement
F. The student will be able to identify procedures of welding for structural repair

Course Competencies:
The student will be able to: in the classroom or classroom shop setting and by meeting any institution-required NATEF Tasks from the criteria outlined below. NATEF Guidelines of: 95% of HP-I items must be taught in the curriculum; 90% of HP-G items must be taught in the curriculum

The student will be able to identify measuring procedures
(Linked External Standards 1.A Frame Inspection and Repair, 1.B Unibody Inspection, Measurement, and Repair)
1. The student will be able to diagnose and measure structural damage using tram and self-centering gauges. (HP-I)(1.A.1)(DAM02 v.2.1 module 1 DAM02v.2.2 modules 2,3 MEA01 modules1,2)
2. The student will be able to diagnose and measure structural damage using a universal measuring system (mechanical, electrical, laser). (HP-G)(1.A.14)(DAM02 v.2.1 module 1 DAM02 v.2.2 module 3 MEA01 module 2)
3. The student will be able to diagnose and measure structural damage to vehicles using a dedicated (fixture) measuring system. (HP-G)(1.A.15)(MEA01 module 2))
4. The student will be able to diagnose and measure unibody damage using tram and self-centering gauges. (HP-I)(1.B.3)(MEA01 modules 1, 2)
5. The student will be able to diagnose and measure unibody vehicles using a universal measuring system (mechanical, electronic, laser). (HP-G)(1.B.6)(DAM02 v.2.1 module 1 DAM02 v.2.2 module 3 MEA01 module 2)
6. The student will be able to identify heat limitations in unibody vehicles. (HP-I)(1.B.15)(FCR01 module 1 SSS01 module 4)
7. The student will be able to analyze and identify crush/collapse zones. (HP-I)(1.B.21)(SPS01 v.3.1 modules 1,4,6 SPS01 v.3.2 modules1,2)

The student will be able to analyze the basic structural damage conditions.
(Linked External Standards 1.A Frame Inspection and Repair, 1.B Unibody Inspection, Measurement, and Repair)
8. The student will be able to diagnose and measure structural damage using tram and self-centering gauges. HP-I)(1.A.1)(DAM02 v.2.1 module 1 DAM02v.2.2 modules 2,3 MEA01 modules1,2)
9. The student will be able to analyze, straighten and align mash (collapse) damage. (HP-G)(1.A.3)(MEA01 module 4 SSS01 module 5)
10. The student will be able to analyze, straighten and align sag damage. (HP-G)(1.A.4)(MEA01 module 4 SSS01 module 5)
11. The student will be able to analyze, straighten and align sidesway damage. (HP-G)(1.A.5)(MEA01 module 4 SSS01 module 5)
12. The student will be able to analyze, straighten and align twist damage. (HP-G)(1.A.6)(MEA01 module 4 SSS01 module 5)
13. The student will be able to analyze, straighten and align diamond frame damage. (HP-G)(1.A.7)(MEA01 module 4 SSS01 module 5)
14. The student will be able to analyze and identify misaligned or damaged steering, suspension, and powertrain components that can cause vibration, steering, and wheel alignment problems. (HP-I)(1.A.10)(DAM03 v.2.2 modules 4,6 DAM03 v.2.4 module 6 DAM06 module 2)
15. The student will be able to diagnose and measure structural damage using a universal measuring system (mechanical, electrical, laser). (HP-G)(1.A.14)(DAM02 v.2.1 module 1 DAM02 v.2.2 module 3 MEA01 module 2)
16. The student will be able to diagnose and measure structural damage to vehicles using a dedicated (fixture) measuring system. (HP-G)(1.A.15)(MEA01 module 2)
17. The student will be able to determine the extent of the direct and indirect damage and the direction of impact; document the methods and sequence of repair. (HP-I)(1.A.16)(DAM02 v.2.1 modules1,3 DAM02 v.2.2 module 2 FCR01 v.2.1 module 2 FCR01 v.2.2 modules 2,3 SSS01 module 1)
18. The student will be able to analyze and identify crush/collapse zones. (HP-I)(1.A.17)(SPS03 module 3 SPS08 modules1,3)
19. The student will be able to diagnose and measure unibody damage using tram and self-centering gauges. (HP-I)(1.B.3)(MEA01 modules 1, 2)
20. The student will be able to determine and inspect the locations of all suspension, steering, and powertrain component attaching points on the vehicle. (HP-G)(1.B.4)(DAM03 module 6 DAM06 module 2 DRT01 modules2,5 MEA01 module 6
21. The student will be able to diagnose and measure unibody vehicles using a dedicated (fixture) measuring system. (HP-G)(1.B.5)(MEA01 module 2)
22. The student will be able to diagnose and measure unibody vehicles using a universal measuring system (mechanical, electronic, laser). (HP-G)(1.B.6)(DAM02 v.2.1 module 1 DAM02 v.2.2 module 3 MEA01 module 2)
23. The student will be able to determine the extent of damage to aluminum structural components; repair, weld, or replace. (HP-G)(1.B.20)(DAM05 module 3 SPA01 modules 1,2 SPA02 modules 1,2 SSA01 modules 1,2,3)
24. The student will be able to analyze and identify crush/collapse zones. (HP-I)(1.B.21)(SPS01 v.3.1 modules 1,4,6 SPS01 v.3.2 modules 1,2)

The student will be able to identify the safety requirements pertaining to structural damage repair

(Linked External Standards 4.A Safety Precautions)

25. The student will be able to identify and take necessary precautions with hazardous operations and materials according to federal, state, and local regulations. (HP-I) (4.A.1)(EDS02 module 1 REF01 module 4 REF03 modules 2,4 WKR01 module3)
26. The student will be able to identify safety and personal health hazards according to OSHA guidelines and the Right to Know Law. (HP-I) (4.A.2)(WKR01 module1)
27. The student will be able to select and use the NIOSH approved personal sanding respirator. Inspect condition and ensure fit and operation. Perform proper maintenance in accordance with OSHA Regulation 1910.134 and applicable state and local regulation. (HP-I) (4.A.4)(WKR01 module 4)
28. The student will be able to select and use the proper personal safety equipment for surface preparation, spray gun and related equipment operation, paint mixing, matching
and application, paint defects, and detailing (gloves, suits, hoods, eye and ear protection, etc.). (HP-I) (4.A.6)(EDS02 modules 1,2,3,4,5,6,7 REF02 module 2 REF03 modules 2,4 WKR01 module 4)

The student will be able to analyze frame repair methods

(Linked External Standards 1.A Frame Inspection and Repair)

29. The student will be able to diagnose and measure structural damage using tram and self-centering gauges. (HP-I) (1.A.1)(DAM02 v.2.1 module 1 DAM02v.2.2 modules 2,3 MEA01 modules1,2)

30. The student will be able to analyze, straighten and align mash (collapse) damage. (HP-G)(1.A.3)(MEA01 module 4 SSS01 module 5)

31. The student will be able to analyze, straighten and align sag damage. (HP-G)(1.A.4)(MEA01 module 4 SSS01 module 5)

32. The student will be able to analyze, straighten and align sidesway damage. (HP-G)(1.A.5)(MEA01 module 4 SSS01 module 5)

33. The student will be able to analyze, straighten and align twist damage. (HP-G)(1.A.6)(MEA01 module 4 SSS01 module 5)

34. The student will be able to analyze, straighten and align diamond frame damage. (HP-G)(1.A.7)(MEA01 module 4 SSS01 module 5)

35. The student will be able to analyze and identify misaligned or damaged steering, suspension, and powertrain components that can cause vibration, steering, and wheel alignment problems. (HP-I)(1.A.10)(DAM03 v.2.2 modules 4,6 DAM03 v.2.4 module 6 DAM06 module 2)

36. The student will be able to identify heat limitations in structural components. (HP-I)(1.A.12)(FCR01 module 1 SSS01 module 4)

37. The student will be able to diagnose and measure structural damage using a universal measuring system (mechanical, electrical, laser). (HP-G)(1.A.14)(DAM02 v.2.1 module 1 DAM02 v.2.2 module 3 MEA01 module 2)

38. The student will be able to determine the extent of the direct and indirect damage and the direction of impact; document the methods and sequence of repair. (HP-I)(1.A.16)(DAM02 v.2.1 modules1,3 DAM02 v.2.2 module 2 FCR01 v.2.1 module 2 FCR01 v.2.2 modules 2,3 SSS01 module 1)

39. The student will be able to analyze and identify crush/collapse zones. (HP-I)(1.A.17)(SPS03 module 3 SPS08 modules1,3)

The student will be able to analyze unibody inspection and measurement

(Linked External Standards 1.B Unibody Inspection, Measurement, and Repair)

40. The student will be able to diagnose and measure unibody damage using tram and self-centering gauges. (HP-I) (1.B.3)(MEA01 modules 1, 2)

41. The student will be able to determine and inspect the locations of all suspension, steering, and powertrain component attaching points on the vehicle. (HP-G) (1.B.4)(DAM03 module 6 DAM06 module 2 DRT01 modules2,5 MEA01 module 6)

42. The student will be able to diagnose and measure unibody vehicles using a dedicated (fixture) measuring system. (HP-G) (1.B.5)(MEA01 module 2)

43. The student will be able to diagnose and measure unibody vehicles using a universal measuring system (mechanical, electronic, laser). (HP-G)(1.B.6)(DAM02 v.2.1 module 1 DAM02 v.2.2 module 3 MEA01 module 2)

44. The student will be able to determine the extent of the direct and indirect damage and the direction of impact; plan and document the methods and sequence of repair. (HP-
45. The student will be able to identify heat limitations in unibody vehicles. (HP-I)
 (1.B.7)(DAM02 v.2.1 modules 1,3 DAM02 v.2.2 module 2 FCR01 v.2.1 module 2
 FCR01 v.2.2 modules 2,3 SSS01 module 1)

46. The student will be able to identify proper cold stress relief methods. (HP-I)
 (1.B.15)(FCR01 module 1 SSS01 module 4)

47. The student will be able to analyze and identify crush/collapse zones. (HP-I)
 (1.B.21)(SPS01 v.3.1 modules 1,4,6 SPS01 v.3.2 modules 1,2)

The student will be able to identify procedures of welding for structural repair

(Linked External Standards 1.D Metal Welding and Cutting)

48. The student will be able to identify weldable and non-weldable materials used in collision
 repair. (HP-I)(1.D.1)(FCR01 module 1)

49. The student will be able to weld and cut high-strength steel and other steels. (HP-I)
 (1.D.2)(WCS01 v.1.2 modules 1,2,3,4 WCS01 v.1.3 modules 1,2,3,4,5)

50. The student will be able to determine the correct GMAW (MIG) welder type, electrode,
 wire type, diameter, and gas to be used in a specific welding situation. (HP-I)
 (1.D.4)(WCS01 module 1)

51. The student will be able to set up and adjust the GMAW (MIG) welder to "tune" for
 proper electrode stickout, voltage, polarity, flow rate, and wire-feed speed required for
 the material being welded. (HP-I)(1.D.5)(WCS01 module 1)

52. The student will be able to store, handle, and install high-pressure gas cylinders. (HP-I)
 (1.D.6)(WCS01 module 1)

53. The student will be able to determine work clamp (ground) location and attach. (HP-I)
 (1.D.7)(WCS01 module 1)

54. The student will be able to use the proper angle of the gun to the joint and direction of
 gun travel for the type of weld being made in the flat, horizontal, vertical, and overhead
 positions. (HP-I)(1.D.8)(WCS01 v.1.2 module 1 WCS01 v.1.3 modules 1,2,3,4,5)

55. The student will be able to protect adjacent panels, glass, vehicle interior, etc. from
 welding and cutting operations. (HP-I)(1.D.9)(WCS01 module 1)

56. The student will be able to protect computers and other electronic control modules during
 welding procedures. (HP-I)(1.D.10)(WCS01 module 1)

57. The student will be able to clean and prepare the metal to be welded, assure good metal
 fit-up, apply weld-through primer if necessary, and clamp as required. (HP-I)
 (1.D.11)(WCS01 module 1)

58. The student will be able to determine the joint type (butt weld with backing, lap, etc.) for
 weld being made. (HP-I)(1.D.12)(SPS01 v.3.1 module 1 SPS01 v.3.2 modules 1,2 SPS02
 v.3.1 module 1 SPS v.3.2 module 2 SPS03 modules 2,3)

59. The student will be able to determine the type of weld (continuous, butt weld with
 backing, plug, etc.) for each specific welding operation. (HP-I)(1.D.13)(SPS01 v.3.1
 module 1 SPS01 v.3.2 modules 1,2 SPS02 v.3.1 module 1 SPS v.3.2 module 2 SPS03
 modules 2,3)

60. The student will be able to perform the following welds: continuous, stitch, tack, plug,
 butt weld with and without backing, and fillet weld. (HP-I)(1.D.14)(WCS01 v.1.2
 modules 2,3,4 WCS01 v.1.3 modules 1,2,3,4,5)

61. The student will be able to perform visual and destructive tests on each weld type. (HP-I)
 (1.D.15)(WCS01 v.1.2 modules 2,3,4 WCS01 v.1.3 modules 2,3,4,5)

62. The student will be able to identify the causes of various welding defects; make necessary
 adjustments. (HP-I)(1.D.16)(WCS01 v.1.2 module 1 WCS01 v.1.3 modules 1,2,3,4,5)
The student will be able to identify cause of contact tip burn-back and failure of wire to feed; make necessary adjustments. (HP-I)(1.D.17)(WCS01 module 1)

The student will be able to identify cutting process for different materials and locations; perform cutting operation. (HP-I)(1.D.18)(WCS05 module 4)

The student will be able to identify different methods of attaching structural components (squeeze type resistance spot welding (STRSW), riveting, structural adhesive, silicon bronze, etc.) (HP-G)(1.D.19)(ADH01 v.1.2 module 1 ADH01 v.1.3 modules 1,2 SPS01 v.3.1 module 1 SPS01 v.3.2 modules 1,2 SPS03 module 4 WCS04 v.2.1 modules 1,2,3 WCS04 v.2.2 modules 1,2,3,4)

ASSSESSMENT OF LEARNER OUTCOMES:
Student progress is evaluated by means that include, but are not limited to, exams, written assignments, and class participation.

Attendance: Attendance will be in accordance with the certifying agency’s requirements.

SPECIAL NOTES:

Safety: Attendance is critical throughout the safety instructions and quizzes. Students must complete all of the safety training before the student can advance or go on to the next course.

Caveats:
1. Safety glasses with side shields are required to be worn during lab activities for this course. This is in compliance with accepted eye protection practices and Kansas State Law (K.S.A. 72-5207). Safety glasses must meet American National Standards Institute Z87.1 specifications. (NOTE: Most prescription eyewear does not meet ANSI Z87.1. Students who wear prescription glasses must: a) Provide evidence that existing eyewear meets ANSI Z87.1, or b) Wear cover goggles (if allowable), or c) Purchase and wear ANSI Z87.1 prescription eyewear.
2. Lab Guidelines: In order to assist with the safe and efficient operation of the automotive lab area, students are expected to be familiar with and adhere to the Automotive Student Lab Guidelines.

This syllabus is subject to change at the discretion of the instructor. Material included is intended to provide an outline of the course and rules that the instructor will adhere to in evaluating the student’s progress. However, this syllabus is not intended to be a legal contract. Questions regarding the syllabus are welcome any time.

Kansas City Kansas Community College is committed to an appreciation of diversity with respect for the differences among the diverse groups comprising our students, faculty, and staff that is free of bigotry and discrimination. Kansas City Kansas Community College is committed to providing a multicultural education and environment that reflects and respects diversity and that seeks to increase understanding.

Kansas City Kansas Community College offers equal educational opportunity to all students as well as serving as an equal opportunity employer for all personnel. Various laws, including Title IX of the Educational Amendments of 1972, require the college’s policy on non-discrimination
be administered without regard to race, color, age, sex, religion, national origin, physical handicap, or veteran status and that such policy be made known.

Kansas City Kansas Community College complies with the Americans with Disabilities Act. If you need accommodations due to a documented disability, please contact the Director of the Academic Resource Center, in Rm. 3354 or call at: 913 288-7670 V/TDD.